skip to main content


Search for: All records

Creators/Authors contains: "Yitbarek, Senay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many of the choices humans make with regard to infrastructure, urban planning and other phenomena have impacts that will last thousands of years. This can readily be seen in modern cities in which contemporary streets run along street grids that were laid out thousands of years prior or even in which ancient viaducts still play a role. However, rarely do evolutionary biologists explicitly consider the future of life likely to be associated with the decisions we are making today. Here, we consider the evolutionary future of species in cities with a focus on the origin of lineages and species. We do so by adjusting evolutionary predictions from the theory of island biogeography so as to correspond to the unique features of cities as islands. Specifically, the species endemic to cities tend to be associated with the gray habitats in cities. Those habitats tend to be dominated by human bodies, pet bodies and stored food. It is among such species where the origin of new lineages is most likely, although most research on evolution in cities has focused on green habitats. We conclude by considering a range of scenarios for the far future and their implications for the origin of lineages and species. 
    more » « less
  2. Abstract Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005–2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch. 
    more » « less
  3. Abstract

    Whether an ecological community is controlled from above or below remains a popular framework that continues generating interesting research questions and takes on especially important meaning in agroecosystems. We describe the regulation from above of three coffee herbivores, a leaf herbivore (the green coffee scale, Coccus viridis), a seed predator (the coffee berry borer, Hypothenemus hampei), and a plant pathogen (the coffee rust disease, caused by Hemelia vastatrix) by various natural enemies, emphasizing the remarkable complexity involved. We emphasize the intersection of this classical question of ecology with the burgeoning field of complex systems, including references to chaos, critical transitions, hysteresis, basin or boundary collision, and spatial self-organization, all aimed at the applied question of pest control in the coffee agroecosystem.

     
    more » « less